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Although η3-allyl transition metal complexes have been well
studied, only a limited number ofη3-hydroxyallyl complexes have
been reported.1 The potential ofη3-hydroxyallyl complexes for
organic synthesis appears very high, because an appropriate
transformation ofη3-hydroxyallyl complex would allow us to
introduce a C3 unit bearing oxygen into organic products. So far,
only η3-2-hydroxyallyl complexes have been investigated as a
derivative of oxatrimethylenemethane (OTMM) complexes, in
which the reversible interconversion betweenη2-OTMM and η3-
2-hydroxyallyl complexes by addition or abstraction of a proton
has been reported (Scheme 1).1c On the other hand, the regioisomer,
η3-1-hydroxyallyl complex, has not been reported yet.2 In view of
the reaction ofη2-enonepalladium complexes with Lewis acid to
give zwitterionic η3-1-metalloxyallylpalladium complexes,3 an
attractive route toη3-1-hydroxyallyl complexes is the addition of
a proton toη2-enone complexes (Scheme 2). However, a proton
could also undergo electrophilic addition at the metal center to
generate a metal hydride complex, as in the reaction of Pd-
(PMePh2)2(CH2dCHPh) with HCl to give Pd(H)(Cl)(PMePh2)2.4

If hydride is formed, there would be little chance for the formation
of η3-1-hydroxyallyl complex, because the hydride and enone would
give â-ketoalkyl andη3-oxaallyl complexes, as suggested by van
Leeuwen and co-workers (Scheme 3).5 For the development of new
η3-allylmetal chemistry, it seems of fundamental value to examine
how efficiently the method of Scheme 2 works. We describe the
synthesis, structure, and reactivity ofη3-1-hydroxyallyl complexes
of palladium and platinum. Moreover, we propose the isomerization
path fromη3-1-hydroxyallyl toâ-ketoalkyl via tautomerization in
an η1-allyl coordination mode.

The reaction ofη2-enonepalladium complex with TfOH gave a
palladium complex (1a-c) having expected composition in el-
emental analysis (eq 1).6 The1H, 31P, and13C NMR spectra indicate
that these complexes have anη3-hydroxyallyl structure or an
intermediate structure between anη3-hydroxyallyl and a proton
coordinatedη2-enone structure.3 1a does not transform into its
isomers,â-ketoalkylpalladium3a or η3-oxaallylpalladium4a (M
) Pd, L2 ) DPPF in Scheme 3). These complexes3a and4a were
reported to undergo mutual isomerization at room temperature via
the insertion of methylvinyl ketone (MVK) into hydridopalladium
species formed by theâ-H elimination (Scheme 3).5 During such
interconversion, there was no indication of the formation ofη3-1-
hydroxyallyl complex. Moreover, neither3a nor 4a was observed
in the reaction of Pd(dppf)(mvk) with TfOH. Thus,η3-1-hydroxy-
allyl complexes would not have been formed via hydride palladium
species but via the direct addition of a proton to the carbonyl oxygen
of the coordinated enone.

The structure of1b and 1c, determined by X-ray diffraction
analysis, is consistent with the anticipated structure (Figures 1 and
2).7 The complex1b is the first example of theη3-1-hydroxyallyl
transition metal complex. The Pd-C3 bond distance (2.29 Å) in

1b is normal as in theη3-allylpalladium complex, while it is
somewhat longer in1c (2.73 Å).8 However, the latter is much
shorter than that in theη2-enonepalladium complex,3 which indicates
significant contribution of theη3-1-hydroxyallyl structure to1c.
The relatively short distance between the two oxygen atoms in the
carbonyl group and TfO- (2.91 Å for 1b, 2.70 Å for1c) suggests
the existence of a hydrogen bond. This hydrogen bond would
lengthen the bond between palladium and carbonyl carbon. The
corresponding complex having B(C6F5)4

- as a counteranion (1c′:
major/minor) 65/35) prepared by the treatment of1b with LiB-
(C6F5)4 shows the larger P-P coupling constant, probably due to
the stronger Pd-C3 bond9 caused by a weaker hydrogen bond
involving B(C6F5)4

-. Addition of pyridine (1 equiv) to the solution
of 1b in CD2Cl2 led to the formation of a mixture of (η2-acrolein)-
Pd(PPh3)2 and1b (56/44), which indicates that the pKa value for
1b is very close to that of pyridine‚H+ (pKa ) 5.22). For
comparison, the pKa of (η3-2-hydroxyallyl)Pd(PPh3)2 in aqueous
MeOH is ca. 7.1c

The analogousη3-1-hydroxyallylplatinum complexes2a, 2b, and
2c were also prepared by the same method. Complexes2a and2c
isomerized slowly to the correspondingâ-ketoalkylplatinum com-
plexes (5a, 5c) at room temperature (Scheme 4),10 although complex
2b did not undergo isomerization under the same condition. The
spontaneous isomerization may proceed via anη1-1-hydroxyallyl
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intermediate. The occurrence of theη1-allyl coordination mode
would promote tautomerization from enol to keto, which could not
occur in theη3-allyl coordination mode. In fact, addition of Bu4-
NCl to 2a led to the formation of theη1-â-ketoalkylplatinum
complex (6) via the η1-1-hydroxyallyl complex (Scheme 5).11

Because Pt(H)(Cl)(dppf)12 did not react with MVK, an alternative
route from2a to 6 via formation of Pt(H)(Cl)(dppf) and its reaction
with MVK would be ruled out. The greater ease of the isomerization
for 2c than 2b would be attributed to the larger contribution of
η3-allyl structure in2b than in2c, which can be deduced from the
comparison of the X-ray structures of1b and 1c. Similarly, the
failure of the corresponding palladium complexes,1a and 1c, to
isomerize to3 (and4) could be rationalized by the highly stable
η3-allyl coordination mode of these complexes, because palladium
prefersη3-coordination toη1-coordination of the allyl ligand to a
greater extent than platinum.13

In summary, we demonstrated that the direct addition of a proton
to a carbonyl oxygen in theη2-enone complex of palladium and
platinum led to the quantitative formation ofη3-1-hydroxyallyl
complexes of palladium and platinum, of which X-ray diffraction
analysis showed typicalη3-allyl structure. Moreover,η3-1-hydroxy-

allylpalladium complex did not undergo isomerization to the
correspondingâ-ketoalkyl palladium complex. On the other hand,
the η3-1-hydroxyallylplatinum complex isomerized to the corre-
spondingâ-ketoalkyl complex, in which tautomerization would
occur in theη1-allyl coordination mode.
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Figure 1. Molecular structure of1b.

Figure 2. Molecular structure of1c.

Scheme 4. Spontaneous Isomerization

Scheme 5. Transformation into the η1-â-Ketoalkyl Complex
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